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High Level Vision

Proposed Workflow

Project Overview
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Objectives: » O

* Generate multi-modality and multi-resolution T

image dataset of normal skin tissue samples.

Whole

* Apply/develop algorithms for multi-modality/multi-  bedy

resolution image registration (2-D to 3-D),
segmentation and quantification.

e Evaluate changes in biomarker expressions and
skin tissue structure as a function of aging and UV
exposure.

Multi-modalities images to be used:

1.
2.
3.

2D highly-multiplexed (Cell DIVE™) images of skin tissue serial sections.

3-D Optical coherence tomography (OCT) or micro-CT

Single cell in situ RNA on a small number of the serial sections (collaboration to be

established)

Most exciting features of our project:

Combining high-dimensional, multi-modality, multi-resolution and multi-omic :
data to gain insight about environmental and aging effects on normal skin tissue. 7
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Multi-omic analysis

A) Non sun-exposed skin in a
young patient

B) Sun-exposed skin in a young
patient

C) non sun-exposed skin in an

elderly patient

D) sun-exposed skin in an
elderly patient showing marked
photoaging effects including
prominent solar elastosis.




Year 1 Deliverables

1. Data Generation

* OCT (or micro-CT) images of 12 skin tissue specimens (younger and older subjects; UV exposed and non-exposed
regions).

* Multiplexed images for 12 specimens (20-25 sections; 15-20 biomarkers).
* Single-cell segmentation and biomarker quantification for all multiplexed images.
* Relevant OCT/micro-CT imaging features.

2. Open Source Code Single Cell Segmentation and Biomarker Quantification
2-D multiplexed image segmentation & quantification
algorithms.

Algorithms for mapping Multiplexed and OCT/micro-CT
images.

(stretch) An algorithm for registering multiplexed
biomarker images (proteomics) with multiplexed RNA
image.

3. Reports summarizing data and analysis
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HUBMAP Collaborations

4 IHC 5-Plex FISH ) IHC + FISH

e Potential Collaborators:

* Long Cai & Guo-Cheng; California Institute of
Technology

* HIVE projects (e.g. Rahul Satija; New York
Genome Center)

e Other RTI Projects

—

* Goals of collaboration:
1. Work with Long Cai et al to link high-resolution cell-level multi-omic (proteomic +
RNA FISH) images and volumetric imaging data (OCT/micro-CT)
2. (Stretch) Work with Rahul Satija to enable integration of the multi-scale, high-
resolution multi-omic maps into the HUuBMAP CCF

* Collaboration status: started initial discussions during the preparation for the proposal
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What should HUBMAP Do ?

* |ntegration with other single cell efforts, e.g. Human Pre-Cancer Atlas,
Human Tumor Atlas, Human Cell Atlas

* Broadening to international participation

* Integrate “normal” microbiome/other environmental factors (diet,
exposure, etc.) analysis & effects on tissue organization/composition
(particularly tissues exposed to microbes)

» Adopting best practices in SW engineering (e.g. Agile methodology,
Data/Code repositories, etc.)
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Multi-Scale Image Analysis at GE Research

From In-vivo/Radiology

To Tissue/ROI/Cell Population

To Single Cell & Sub-Cellular

CT Lung Nodule Detection and Screening

8enign Malignant Malignant
! u ! =l

MRI Prostate Tumor

Ultrasound Organ

Detection Segmentation

Automated MRI Scan
Planning

Brain Structures
Segmentation

Tissue (epithelial) Segmentation

Image-level Biomarker
Thresholding

Deep Learning-based
Organoids Segmentation

DAB Image -
+3,Her2

Digital Pathology
(Image Scoring)

Staining and Segmentation QC

NoK_ATPase Image Score = 1.6/10 (Poor staining)

NoK_ATPase image Score = 9.6/10(Good staining)

. ‘-

Color decomposition

PanCK Image Good Epithelial Mask Poor Epithelial Mask

- Segmentation
& Classification

Segmentation Mask

Multi-channel Single Cell
Segmentation

CD20 (red) , CD3 (green), double negative (blue)

Deep Learning-based Single
Channel Cell Segmentation

/""Classical Machine.
Learning (SVM).-

i ROC Curve

Blood Vessels Segmentation Neurites Segmentation

CD31 (Row) Multi-Morker Segmentation

DNA FISH

Red: Her2 FISH dots

n-

Biomarker
Quantification

P53 Nucleq
Localization

Sub-Cellular Analysis

Puncta Fibers

Mltochondrla




Example Applications

Tumor Blood Vessel Maturity Profiling Brain Tissues (Neuro) Analysis
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: An example of using
multi-channel vessel
| segmentation to

| investigate different
stages of blood

l vessel maturity and
molecular
characteristics.

An example of
using single cell
segmentation,
biomarker
guantification and
cell classification
(Neurons and Glia
cells) using brain
tissue images
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Uhlik et al (Clinical Cancer Research 2016)

Intra-Tumoral
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PMI (Pointwise Mutual Information): Computes spatial
heterogeneity maps that capture the relative spatial
cooccurrences of cell phenotypes (denoted by various cell colors)
in a multiplexed IF image

Spagnolo et al, J. Pathol Inform (2016)




